logo

Standards Manage Your Business

We Manage Your Standards

SAE

SAE 2017-01-1765 : 2017

Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

Standard Details

Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems. Foam layers with a range of thicknesses were applied near the inside surface of the cylinder to represent different degrees of conventional blanket treatments. Excitations including point force as well as harmonic and random fluctuating pressure fields were considered. The results suggest that structurally integrated resonators can be tuned to address a variety of noise control requirements and effectively used in conjunction with foam blanket noise treatments, but their relative benefit is reduced when thicker foam treatments are used.

Cross Reference:

General Information

Status : ACTIVE
Standard Type: Main
Document No: SAE 2017-01-1765 : 2017
Document Year: 2017

Life Cycle

Currently Viewing

ACTIVE
SAE 2017-01-1765 : 2017
Knowledge Corner

Expand Your Knowledge and Unlock Your Learning Potential - Your One-Stop Source for Information!

© Copyright 2024 BSB Edge Private Limited.

Enquire now +