logo

Standards Manage Your Business

We Manage Your Standards

SAE

SAE 2017-01-1048 : 2017

Lower Cost Automotive Piston from 2124/SiC/25p Metal-Matrix Composite

Standard Details

Engineered materials have made a breakthrough in a quest for materials with a combination of custom-made properties to suit particular applications. One of such materials is 2124/SiC/25p, a high-quality aerospace grade aluminium alloy reinforced with ultrafine particles of silicon carbide, manufactured by a powder metallurgy route. This aluminium matrix composite offers a combination of greater fatigue strength at elevated temperatures, lower thermal expansion and greater wear resistance in comparison with conventionally used piston materials. The microscale particulate reinforcement also offers good formability and machinability. Despite the benefits, the higher manufacturing cost often limits their usage in high-volume industries such as automotive where such materials could significantly improve the engine performance. This paper presents mechanical and forging data for a lower cost processing route for metal matrix composites. Finite element modelling and analysis were used to examine forging of an automotive piston and die wear. This showed that selection of the forging route is important to maximise die life. Mechanical testing of the forged material showed a minimal reduction in fatigue properties at the piston operating temperature.

Cross Reference:

General Information

Status : ACTIVE
Standard Type: Main
Document No: SAE 2017-01-1048 : 2017
Document Year: 2017

Life Cycle

Currently Viewing

ACTIVE
SAE 2017-01-1048 : 2017
Knowledge Corner

Expand Your Knowledge and Unlock Your Learning Potential - Your One-Stop Source for Information!

© Copyright 2024 BSB Edge Private Limited.

Enquire now +